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In [1, 2], on the assumption that the magnetic Reynolds number was small, the author obtained exact expressions 
for the stationary complex  velocity v(z) = u x - .iUy and temperature T(z) of an ionized medium moving between paral-  
lel plates under the influence of a Constant pressure drop Px in a strong Uniform transverse magnetic field B z - B0. The 
height of the channel is 2,,, the wails are kept at the constant temperature T (-+a) = 0, and there is no external electric 
field. 

The medium is assumed to be incompressible (p = const) and its degree of ionization is constant (s = const). 

Then for viscous friction stress we have 

Here the components of the viscous stress tensor ~rxz and ~ry z have the form [3] 
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Expressions for the viscosity coefficients ~(2) and ~(4) are presented in [1]. 

Substituting (2) in (1) and going over to the nondimensional form, taking as the scales of r, u andZ the quanti- 
ties and a, respectively, for the square of the local viscous friction coefficient we get 
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Here R (~ is the Reynolds number, and ~(0) and ~a are the viscosity coefficients of the partially ionized medium 
as a whole and of the "isolated" neutrals in the case when the magnetic field is equal to zero [3]. The dimensionless 
parameter ~o i ri  o characterizes the anisotropy of the viscosity coefficients (w i is the ion cyclotron frequency, rio is re- 
lated to the t ime of all possible ion collisions). 

If  in the expression for the stationary velocity we separate the real and imaginary parts and substitute in (3), we 
finally get for the surface friction at the upper wall (z = 1) 
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Here M (*) is the Hartmann number, o0 is the conductivity of the medium, ~i (~ is the ion viscosity coefficient 
B0 = 0, Z is the charge number, w e is the electron cyclotron frequency, ~'a/3 -~ is the effective collision frequency for 
particles of types cc and /3. 

Note that the relations Wa/~ (~ and ~i(~ (~ entering into (4) depend significantly on the degree of ionization s. 
To establish this dependence requires a special study; however, for the extreme cases of weakly ionized and completely 
ionized medium it is easy to obtain [3] 
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By virtue of  the geometry of the problem (heat transfer is realized along the ;-nagnetic field), the heat flux to the 

plate has the same form as in isotropic magnetohydrodynamics 

�9 OT (8) 

Here k T is the heat conductivity of  the medium in the absence of a magnetic field [3]. The effect of the magnetic 
field on the heat flux is therefore realized only through the temperature gradient. An expression for the latter is easily 
obtained from the formula for the stationary temperature found in [2]. Carrying out the necessary transformations, in 

dimensionless form we get 
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The symbols ~ and o denote the parts of the gradient characterizing viscous dissipation and Joule heating at the 
upper wall, Npr(~ is the Prandtl number, Cpa is the heat capaci ty of unit mass of neutrals, T* is the characteristic 

temperature. 
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Below we present the results of a numberical study of the dependence of the ex- 
pressions obtained for the viscous friction coefficient (4! and the dimensionless t em-  
perature gradient.~ (9)-(11) on the Hartmann number M( ) for different values of the 
anisotropy parameters of the electrons and ions. The results are plotted in Figs. 1-4, 

where the following notation has been introduced: 
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Fig. I 
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The curves 1-5 in the figures correspond to the following values Of t he  parameters:  

1 o),Xo ' ~  t ,  co,4,0"~ t, ~s" ~;t  ~ 'i, 

4 o,xo = 40, oi'r~ = l, s ' ~ l ,  

a m~ro = 4 0 ,  ~ocr iO = t ,  ~ = t ,  

3 ~O~Xo ----- t, r ~ t, s = 1. 

In the calculat ions it was assumed t h a t  Z = 1. Analysis of t h e  data obtained enables one to draw the following 
conclusions. 

. . O )  o 

1. When COer0 << 1 (isotropic magnetohydrodynamics) an increase in M ( leads to a fal l  m the viscous friction 
coeff icient ,  which has a maximum at M (*) = 0, i . e . ,  in the purely hydrodynamic case (Fig. 1). This fal l  is a conse- 
quence of the known decrease in the veloci ty  gradient  at  the Wall wi th  increase in Hartmann number owing t o  the re -  
tarding effect  of the ponderomotive force. The decrease in viscous friction at  the wall  leads also to a decrease in vis-  
cous dissipation with increase in M(*) (Fig. 3). The Joule heat  flux to t h e w a l l  has a somewhat different character  (Fig. 

�9 o . . " o )  . ' 4) Increasing from 0 at  M ( ) = 0, !t reaches a maximum at M ( ~ 1. 6 and only then begins to fall. However, the 
r . . . , . : , o . 

to ta l  heat  flux to the upper wall  (Fig. 2) decreases monotomcal ly  with increase in M (*), while for M (~ < 1. 6 the con- 
tribution of viscous heat  exceeds the contribution of Joule heat ,  and at M (*) > 1. 6 the reverse picture is observed. 

Note that a study of the heat  flux to the wall  in the Hartmann flow regime,  when the e lec t r i c  field is .not zero, 

was made in [4, 5]. 

Note that in [5] an incorrect  conclusion was drawn concerning the increase in 
0 \ ~  ~ _ ~ " ~  hea t  flux with increase in Hartmann number when the la t te r  is large. The authors did 

~ ' , ~ t  ~ ' ~  not take into account the dependence of the fluid ve loc i ty  in the middle  plane of 

02 ~,~ ..-+-" / +  the channel  (z = 0) on the Hartmann number. Taking this factor into account also 
~ , ~  leads to a fal l  in heat  flux with increase in Hartmann number, and in this case when 

M (~ >> 1 the flux decreases as M (*) - t  In the regime with no e lec t r i c  field the de -  . ~  . . ( ~  
crease is more intense, namely ,  as M . 

0 8 t~ (~ 2. As may  be seen from the graphs, taking into account the conduct ivi ty  an-  
isotropy when COer0 = 1, wiTiO << 1 does not have much effect  on the behavior of the 

Fig. 2 viscous friction and the hea t  flux at the wall. Note, however,  that for weak ion iza -  
tion of the medium (s >> 1) both the quanti ty Cf+ and the der ivat ive  0 for the same 

values of M (*) are greater  than in the case of isotropic magnetohydrodynamics.  An increase in the degree of ionizat ion 
leads to a decrease inCs+,  [dT/dz],=,, [d'Tn'/dz],=l and an increase in [dr,/dz]~=,. Thus 

Cf+[8=,/, = 0.85t2Ct+[, ,, C t+] ,= ,  = 0.7918 cf+ls~..,, 

--d-z-/z=l = 0.7222 , = \ dz /z=l \ dz Jz=l ~, dz /Z=l 

The la t te r  is l inked with intensif icat ion of the current density, an increase in the retarding ac t ion  of the pondero-  
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Fig. 3 Fig. 4 

motive  force, and, hence,  with a decrease in the ve loc i tygrad ien ts  at  the duct wall. 

3. Taking into account  the effects of Larmor precession of both electrons and ions sharply changes the form of the 

curves charac ter iz ing  viscous friction and the heat  flux at the wall. In this case the degree of ioniza t ion  also has an 

important  influence. 
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When s >> 1 for ident ica l  Hartmann numhers at  wi~'ia = 1, r = 40 one observes a sharp increase both in surface 
friction and in the temperature  gradient at  the upper waU, as compared with the previous cases. This is connected, in 
part icular ,  with a weakening of  the current density owing to inclusion of the effect of ion slip re la t ive  to the neutrals. 
Although a decrease in cr and [diP / dz],=~ with increase in M (~ is still observed, the intensity of this decrease is re- 

d o 

duced. Up to very large M ( ) the contribution to the heat flux from viscous dissipation considerably exceeds the contri- 
bution from Joule heat (weak current). 

In the other extreme case, when 8 ----- I, e/+ and [diP / C/Zlz~ increasing with increase in M (~ pass through a 
maximum and only then begin to decrease monotonically with further increase in M (~ Here the contributions to the 
heat flux made by viscous dissipation and Joule heating are almost equivalent. 
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