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In[1, 2], on the assumption that the magnetic Reynolds number was small, the author obtained exact expressions
for the stationary complex velocity v(z) = uy iuy and temperature T(z) of an ionized medium moving between paral-

lel plates under the influence of a constant pressure drop Py in a strong uniform transverse magnetic field B, =B,. The
height of the channel is 2a, the walls are kept at the constant temperature T (2a) = 0, and there is no external electric

field.
The medium is assumed to be incompressible (p = const) and its degree of ionization is constant (s = const).

Then for viscous friction stress we have
TZ = J'I::x:z2 + ﬂyzg. (1)

Here the components of the viscous stress tensor Ty, and Tyz have the form [3]
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Expressions for the viscosity coefficients n(Z) and '11(\4) are presented in [11

Substituting (2) in (1) and going over to the nondimensional form, taking as the scalesof 7, u and z the quanti-

ties and a, respectively, for the square of the local viscous friction coefficient we get
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Here R(*) is the Reynolds number, and () and Ty are the viséosity coefficients of the partially ionized medinum
as a whole and of the "isolated” neutrals in the case when the magnetic field is equal to zero [3]. The dimensionless
parameter w; Ti6 characterizes the anisotropy of the viscosity coefficients (wj is the ion cyclotron frequency, 76 is re-
lated to the time of all possible ion collisions). ) '

If in the expression for the stationary velocity we separate the real and imaginary parts and substitute in (3), we
finally get for the surface friction at the upper wall (z = 1)
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Here M(*) is the Hartmann number, o is the conductivity of the medium, ni@ is the ion viscosity coefficient
By = 0, Z is the charge number, w, is the electron cyclotron frequency, 7,4 B'l is the effective collision frequency for
particles of types o and B.

Note that the relations na/‘n(“) and ;¢ )nt) entering into (4) depend significantly on the degree of ionization s.
To establish this dependence requires a special study; however, for the extreme cases of weakly ionized and completely
ionized medium it is easy to obtain [3]

(Ma /@) =1 = (19 /1V) g1 =0, (Ma /@) sy = M/ 9®) sy = 1. )

By virtue of the geometry of the problem (heat transfer is realized along the magnetic field), the heat flux to the
plate has the same form as in isotropic magnetohydrodynamics

0= A () ®

Here AT is the heat conductivity of the medium in the absence of a magnetic field [3]. The effect of the magnetic
field on the heat flux is therefore realized only through the temperature gradient. An expression for the latter is easily
obtained from the formula for the stationary temperature found in [2]. Carrying out the necessary transformations, in
dimensionless form we get
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The symbols 1 and o denote the parts of the gradient characterizing viscous dissipation and Joule heating at the
upper wall, Npr(o) is the Prandtl number, Cpz is the heat capacity of unit mass of neutrals, T* is the characteristic
temperature.

Below we present the results of a numberical study of the dependence of the ex-
pressions obtained for the viscous friction coefficient (4) and the dimensionless tem-
perature gradients (9)-(11) on the Hartmann number M) for different values of the
anisotropy parameters of the electrons and ions, The results are plotted in Figs. 1-4,
where the following notation has been introduced:

L=

e=0[%7£;] , 95=ﬁ[0-ldz°—]
N z=1 L 2 Jz=1,
B R S S 0=ﬁ:(£,l] {}=~ —1
L - 2 dz 2=’ T anR(o)'N P(;) .
Fig, 1-
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The curves 1-6 in the figures correspond to the following values of the parameters:

Lot K1, 081, s E’;[(’, L,
4 Gero = 40, oTia=1,. <1,
5 @eTo = 40, @10 == 1, s=1,
2 @o10 = 1, 0t <1, X,

3 weto = 1, 01 <L, s=1,

In the calculations it was assumed that'Z = 1. Analysis of the'data obtained enables one to draw the following
conclusions,

1, When wgyTy < 1 (isotropic magnetohydrodynamics) an increase in M(") leads to a fall in the viscous friction
coefficient, which has a maximum at M\ = 0, i e.; in the purely hydrodynamic case (Fig. 1). This fall is a conse-
quence of the known decrease in the velocity gradient at the wall with increase in Hartmann number owing to the re-
tarding effect of the ponderomotive force. The decrease in viscous friction at the wall leads also to a decrease in vis-
cous dissipation with increase in YA (Fig. 3). The Joule heat flux to the wall has a somewhat different character (Fig.
4). Increasing from 0 at M = 0, it reaches a maximum at M(®) ~ 1. 6.and only then begins to fall. However, the
total heat flux to the upper wall (Fig. 2) decreases monotonically with increase in M) » while for M(°) < L. 6 the con~
tribution of viscous heat exceeds the contribution of Joule heat, and at VRS 1. 6 the reverse pictiire is observed.

Note that a study of the heat flux to the wall in the Hartmann flow regime, when the electric field is not 2e10,
was made in [4, 5]

Note that in [5] an incorrect conclusion was drawn concerning the increase in

AN M l  heat flux with increase in Hartmann number when the latter is latge. The authors did
‘ Y ‘0:::0\0\ " not take into account the dependence of the fluid velocity in the middle plane of
a7 2 +,#/*" I~ the channel (z = 0) on the Hartmann number. Taking this factor into account also
*‘;\' E’ ™ leads to a fall in heat flux with increase in Hartmann number, and in this case when
\\-‘\% M® > 1 the flux decreases as M(®) ~% In the regime with no electric field the de-
\_‘\‘ crease is more intense, namely, as M 2, :
0 4 3 N

2. As may be seen from the graphs, taking into account the conductivity an-
isotropy when wgTo = 1, w;Ti6 < 1 does not have much effect on the behavior of the
Fig. 2 viscous friction and the heat flux at the wall. Note, however, that for weak ioniza-
tion of the medium (s > 1) both the quantity C;, and the derivative 6 for the same
values of M are greater than in the case of isotropic magnetohydrodynamics. An increase in the degree of ionization
leads to a decrease inCyy, [dT / dz)e—1, [d7n [ dz].—1 and an increase in [476/dz].=s. Thus
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The latter is linked with intensification of the current density, an increase in the retarding action of the pondero-
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motive force, and, hence, with a decrease in the velocity gradients at the duct wall

3. Taking into account the effects of Larmor precession of both electrons and ions sharply changes the form of the
curves characterizing viscous friction and the heat flux at the wall. In this case the degree of ionization also has an
important influence.
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When s > 1 for identical Hartmann numbers at W;iTig = 1, waTy =40 one observes a sharp increase both in surface
friction and in the temperature gradient at the upper wall, as compared with the previous cases. This is connected, in
particular, with a weakening of the current density owing to inclusion of the effect of ion slip relative to the neutrals.
Although a decrease in Cf+ and [d7 / dz];—, with increase in M(") is still observed, the intensity of this decrease is re-
duced. Up to very large M** the contribution to the heat flux from viscous dissipation considerably exceeds the contri-
bution from Joule heat (weak current). ‘

In the other extreme case, when s == 1, ¢y, and (¢T/dz):=1 increasing with increase in M("), pass through a
maximum and only then begin to decrease monotonically with further increase in M), Here the contributions to the
heat flux made by viscous dissipation and Joule heating are almost equivalent. '
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